Why Has Inequality Been Rising? (based on work with M. Kremer)

E. Maskin

I.S.E.O. Summer School

June 2017

- In last 30 years, significant increase in income inequality
- In last 30 years, significant increase in income inequality
- in many rich countries (including U.S.)
- In last 30 years, significant increase in income inequality
- in many rich countries (including U.S.)
- in many poor countries (including India and Mexico)
- In last 30 years, significant increase in income inequality
- in many rich countries (including U.S.)
- in many poor countries (including India and Mexico)
- referring here to inequality increases within countries
- In last 30 years, significant increase in income inequality
- in many rich countries (including U.S.)
- in many poor countries (including India and Mexico)
- referring here to inequality increases within countries
- inequality has been falling across countries
- In last 30 years, significant increase in income inequality
- in many rich countries (including U.S.)
- in many poor countries (including India and Mexico)
- referring here to inequality increases within countries
- inequality has been falling across countries
- many poor countries (especially India and China) are catching up
- In last 30 years, significant increase in income inequality
- in many rich countries (including U.S.)
- in many poor countries (including India and Mexico)
- referring here to inequality increases within countries
- inequality has been falling across countries
- many poor countries (especially India and China) are catching up
- Increases are theoretically puzzling

First, take inequality increase in U.S.

First, take inequality increase in U.S.

- well accepted relationship

First, take inequality increase in U.S.

- well accepted relationship
wage \leftrightarrow education/training (skill)

First, take inequality increase in U.S.

- well accepted relationship

$$
\text { wage } \leftrightarrow \text { education/training (skill) }
$$

- dispersion of skill has risen in U.S. (also the median)

First, take inequality increase in U.S.

- well accepted relationship

$$
\text { wage } \leftrightarrow \text { education/training (skill) }
$$

- dispersion of skill has risen in U.S. (also the median)
- but not nearly so much as dispersion in income

First, take inequality increase in U.S.

- well accepted relationship

$$
\text { wage } \leftrightarrow \text { education/training (skill) }
$$

- dispersion of skill has risen in U.S. (also the median)
- but not nearly so much as dispersion in income
- holding wage as a function of skill fixed, shift in skill distribution explains only 20% of increase in income dispersion between 1980 and 2000

First, take inequality increase in U.S.

- well accepted relationship

$$
\text { wage } \leftrightarrow \text { education/training (skill) }
$$

- dispersion of skill has risen in U.S. (also the median)
- but not nearly so much as dispersion in income
- holding wage as a function of skill fixed, shift in skill distribution explains only 20% of increase in income dispersion between 1980 and 2000
- but wage schedule not fixed

First, take inequality increase in U.S.

- well accepted relationship

$$
\text { wage } \leftrightarrow \text { education/training (skill) }
$$

- dispersion of skill has risen in U.S. (also the median)
- but not nearly so much as dispersion in income
- holding wage as a function of skill fixed, shift in skill distribution explains only 20% of increase in income dispersion between 1980 and 2000
- but wage schedule not fixed
- Why not?
- One popular answer: skill-biased technological change
- One popular answer: skill-biased technological change
- technology biased in favor of high skills
- One popular answer: skill-biased technological change
- technology biased in favor of high skills
- marginal product of high-skill workers enhanced \Rightarrow their wages rise relative to low-skill workers' wages
- One popular answer: skill-biased technological change
- technology biased in favor of high skills
- marginal product of high-skill workers enhanced \Rightarrow their wages rise relative to low-skill workers’ wages
- Objection:
- One popular answer: skill-biased technological change
- technology biased in favor of high skills
- marginal product of high-skill workers enhanced \Rightarrow their wages rise relative to low-skill workers' wages
- Objection:
- difficult to measure such technological change
- One popular answer: skill-biased technological change
- technology biased in favor of high skills
- marginal product of high-skill workers enhanced \Rightarrow their wages rise relative to low-skill workers’ wages
- Objection:
- difficult to measure such technological change
- rather complicated theory
- One popular answer: skill-biased technological change
- technology biased in favor of high skills
- marginal product of high-skill workers enhanced \Rightarrow their wages rise relative to low-skill workers' wages
- Objection:
- difficult to measure such technological change
- rather complicated theory
- Propose a different (simpler) theory based on matching
- One popular answer: skill-biased technological change
- technology biased in favor of high skills
- marginal product of high-skill workers enhanced \Rightarrow their wages rise relative to low-skill workers' wages
- Objection:
- difficult to measure such technological change
- rather complicated theory
- Propose a different (simpler) theory based on matching
- firm matches workers of different skills to produce output
- One popular answer: skill-biased technological change
- technology biased in favor of high skills
- marginal product of high-skill workers enhanced \Rightarrow their wages rise relative to low-skill workers' wages
- Objection:
- difficult to measure such technological change
- rather complicated theory
- Propose a different (simpler) theory based on matching
- firm matches workers of different skills to produce output
- as skill dispersion and median increase, pattern of matching between workers of different skills within firm changes
- One popular answer: skill-biased technological change
- technology biased in favor of high skills
- marginal product of high-skill workers enhanced \Rightarrow their wages rise relative to low-skill workers' wages
- Objection:
- difficult to measure such technological change
- rather complicated theory
- Propose a different (simpler) theory based on matching
- firm matches workers of different skills to produce output
- as skill dispersion and median increase, pattern of matching between workers of different skills within firm changes
- can induce even bigger increase in income dispersion
- One popular answer: skill-biased technological change
- technology biased in favor of high skills
- marginal product of high-skill workers enhanced \Rightarrow their wages rise relative to low-skill workers' wages
- Objection:
- difficult to measure such technological change
- rather complicated theory
- Propose a different (simpler) theory based on matching
- firm matches workers of different skills to produce output
- as skill dispersion and median increase, pattern of matching between workers of different skills within firm changes
- can induce even bigger increase in income dispersion
- leads to greater relative segregation of skill within firms
- This last prediction is novel to our theory: variation of skills within firm falls relative to variation across firms
- This last prediction is novel to our theory: variation of skills within firm falls relative to variation across firms
- Illustrative examples
- This last prediction is novel to our theory: variation of skills within firm falls relative to variation across firms
- Illustrative examples
- General Motors: typical large firm of generation ago mixed high-skill labor (engineers)
with
low-skill labor (assembly-line workers)
- This last prediction is novel to our theory: variation of skills within firm falls relative to variation across firms
- Illustrative examples
- General Motors: typical large firm of generation ago mixed high-skill labor (engineers)
with
low-skill labor (assembly-line workers)
- typical firms of today:
- This last prediction is novel to our theory: variation of skills within firm falls relative to variation across firms
- Illustrative examples
- General Motors: typical large firm of generation ago mixed high-skill labor (engineers) with
low-skill labor (assembly-line workers)
- typical firms of today:

Microsoft (mainly high-skill) and

- This last prediction is novel to our theory: variation of skills within firm falls relative to variation across firms
- Illustrative examples
- General Motors: typical large firm of generation ago mixed high-skill labor (engineers) with
low-skill labor (assembly-line workers)
- typical firms of today:

Microsoft (mainly high-skill) and
McDonald's (mainly low-skill)

- This last prediction is novel to our theory: variation of skills within firm falls relative to variation across firms
- Illustrative examples
- General Motors: typical large firm of generation ago mixed high-skill labor (engineers) with
low-skill labor (assembly-line workers)
- typical firms of today:

Microsoft (mainly high-skill) and
McDonald's (mainly low-skill)

- segregation prediction borne out by evidence for U.S., U.K., and France

Second, growth of inequality in Mexico

Second, growth of inequality in Mexico

- followed a period of liberalized trade

Second, growth of inequality in Mexico

- followed a period of liberalized trade
- Mexico joined GATT in 1985

Second, growth of inequality in Mexico

- followed a period of liberalized trade
- Mexico joined GATT in 1985
- in 2 years average tariffs fell by 50%

Second, growth of inequality in Mexico

- followed a period of liberalized trade
- Mexico joined GATT in 1985
- in 2 years average tariffs fell by 50%
- FDI quadrupled

Second, growth of inequality in Mexico

- followed a period of liberalized trade
- Mexico joined GATT in 1985
- in 2 years average tariffs fell by 50%
- FDI quadrupled
- white-collar wages increased by 16%

Second, growth of inequality in Mexico

- followed a period of liberalized trade
- Mexico joined GATT in 1985
- in 2 years average tariffs fell by 50%
- FDI quadrupled
- white-collar wages increased by 16%
- blue-collar wages fell by 14%

Second, growth of inequality in Mexico

- followed a period of liberalized trade
- Mexico joined GATT in 1985
- in 2 years average tariffs fell by 50%
- FDI quadrupled
- white-collar wages increased by 16%
- blue-collar wages fell by 14%
- globalization (increase in trade) aggravated inequality

Contradicts Heckscher-Ohlin theory

Contradicts Heckscher-Ohlin theory

- Mexico has comparative advantage in low-skill labor

Contradicts Heckscher-Ohlin theory

- Mexico has comparative advantage in low-skill labor
- in autarky,

Contradicts Heckscher-Ohlin theory

- Mexico has comparative advantage in low-skill labor
- in autarky,
- high-skill labor in short supply, so commands especially high wage

Contradicts Heckscher-Ohlin theory

- Mexico has comparative advantage in low-skill labor
- in autarky,
- high-skill labor in short supply, so commands especially high wage
- low-skill labor paid correspondingly poorly

Contradicts Heckscher-Ohlin theory

- Mexico has comparative advantage in low-skill labor
- in autarky,
- high-skill labor in short supply, so commands especially high wage
- low-skill labor paid correspondingly poorly
- opposite true in U.S.:

Contradicts Heckscher-Ohlin theory

- Mexico has comparative advantage in low-skill labor
- in autarky,
- high-skill labor in short supply, so commands especially high wage
- low-skill labor paid correspondingly poorly
- opposite true in U.S.:
- high-skill labor gets comparatively low wage

Contradicts Heckscher-Ohlin theory

- Mexico has comparative advantage in low-skill labor
- in autarky,
- high-skill labor in short supply, so commands especially high wage
- low-skill labor paid correspondingly poorly
- opposite true in U.S.:
- high-skill labor gets comparatively low wage
- low-skill labor paid comparatively well

Contradicts Heckscher-Ohlin theory

- Mexico has comparative advantage in low-skill labor
- in autarky,
- high-skill labor in short supply, so commands especially high wage
- low-skill labor paid correspondingly poorly
- opposite true in U.S.:
- high-skill labor gets comparatively low wage
- low-skill labor paid comparatively well
- after trade opened, factor prices should equalize

Contradicts Heckscher-Ohlin theory

- Mexico has comparative advantage in low-skill labor
- in autarky,
- high-skill labor in short supply, so commands especially high wage
- low-skill labor paid correspondingly poorly
- opposite true in U.S.:
- high-skill labor gets comparatively low wage
- low-skill labor paid comparatively well
- after trade opened, factor prices should equalize
- high-skill wages in Mexico should fall

Contradicts Heckscher-Ohlin theory

- Mexico has comparative advantage in low-skill labor
- in autarky,
- high-skill labor in short supply, so commands especially high wage
- low-skill labor paid correspondingly poorly
- opposite true in U.S.:
- high-skill labor gets comparatively low wage
- low-skill labor paid comparatively well
- after trade opened, factor prices should equalize
- high-skill wages in Mexico should fall
- low-skill wages in Mexico rise

Contradicts Heckscher-Ohlin theory

- Mexico has comparative advantage in low-skill labor
- in autarky,
- high-skill labor in short supply, so commands especially high wage
- low-skill labor paid correspondingly poorly
- opposite true in U.S.:
- high-skill labor gets comparatively low wage
- low-skill labor paid comparatively well
- after trade opened, factor prices should equalize
- high-skill wages in Mexico should fall
- low-skill wages in Mexico rise
- trade should decrease inequality in Mexico
- Will argue that same matching model explains Mexico’s higher inequality
- Will argue that same matching model explains Mexico’s higher inequality
- But first return to inequality in U.S. (also U.K. and France)
- 1-good economy
- 1-good economy
- good produced by competitive firms
- 1-good economy
- good produced by competitive firms
- labor only input
- 1-good economy
- good produced by competitive firms
- labor only input
- labor comes in 3 skill levels q

$$
L<M<H
$$

- 1-good economy
- good produced by competitive firms
- labor only input
- labor comes in 3 skill levels q

$$
L<M<H
$$

- $p(q)=$ proportion of workers having skill q

All firms have same production process

All firms have same production process
 - 2 tasks

All firms have same production process

- 2 tasks
- one "managerial" - - sensitive to skill level

All firms have same production process

- 2 tasks
- one "managerial" - - sensitive to skill level
- one "subordinate" - - less sensitive to skill output $=q_{s} q_{m}^{2}$

All firms have same production process

- 2 tasks
- one "managerial" - - sensitive to skill level
- one "subordinate" - - less sensitive to skill output $=q_{s} q_{m}^{2}$
- formula incorporates 3 critical features

All firms have same production process

- 2 tasks
- one "managerial" - - sensitive to skill level
- one "subordinate" - - less sensitive to skill output $=q_{s} q_{m}^{2}$
- formula incorporates 3 critical features
(i) workers of different skills imperfect substitutes

All firms have same production process

- 2 tasks
- one "managerial" - - sensitive to skill level
- one "subordinate" - - less sensitive to skill output $=q_{s} q_{m}^{2}$
- formula incorporates 3 critical features
(i) workers of different skills imperfect substitutes
(ii) different tasks within firm complementary

All firms have same production process

- 2 tasks
- one "managerial" - - sensitive to skill level
- one "subordinate" - - less sensitive to skill output $=q_{s} q_{m}^{2}$
- formula incorporates 3 critical features
(i) workers of different skills imperfect
substitutes
(ii) different tasks within firm complementary
(iii) different tasks differentially sensitive to skill

(i) workers of different skills imperfect substitutes

(i) workers of different skills imperfect substitutes

- if perfect substitutability, q-worker (worker of skill q) can be replaced by $2 \frac{q}{2}$-workers
(i) workers of different skills imperfect substitutes
- if perfect substitutability, q-worker (worker of skill q) can be replaced by $2 \frac{q}{2}$-workers
- so, no prediction about skill levèls in firm
- - no segregation
(i) workers of different skills imperfect substitutes
- if perfect substitutability, q-worker (worker of skill q) can be replaced by $2 \frac{q}{2}$-workers
- so, no prediction about skill levèls in firm
- - no segregation
- q-worker always paid twice as much as $\frac{q}{2}$-worker
(i) workers of different skills imperfect substitutes
- if perfect substitutability, q-worker (worker of skill q) can be replaced by $2 \frac{q}{2}$-workers
- so, no prediction about skill levels in firm
- - no segregation
- q-worker always paid twice as much as $\frac{q}{2}$-worker
- so inequality between q-worker and $\frac{q}{2}$-worker can't increase

(ii) different tasks complementary

(ii) different tasks complementary

- if instead

(ii) different tasks complementary

- if instead

$$
\text { output }=f\left(q_{s}\right)+g\left(q_{m}\right)
$$

(ii) different tasks complementary

- if instead

$$
\text { output }=f\left(q_{s}\right)+g\left(q_{m}\right)
$$

optimal choice of q_{s} independent of that of q_{m}
(ii) different tasks complementary

- if instead

$$
\text { output }=f\left(q_{s}\right)+g\left(q_{m}\right)
$$

optimal choice of q_{s} independent of that of q_{m}

- so again no prediction about combination of skill levels in firm
(iii) different tasks differentially sensitive to skill
(iii) different tasks differentially sensitive to skill
- if instead
(iii) different tasks differentially sensitive to skill
- if instead

$$
\text { output }=q_{s} q_{m},
$$

(iii) different tasks differentially sensitive to skill

- if instead

$$
\begin{aligned}
& \text { output }=q_{s} q_{m} \text {, } \\
& \text { get complete segregation of skill: } q_{s}=q_{m}
\end{aligned}
$$

(iii) different tasks differentially sensitive to skill

- if instead

$$
\begin{aligned}
& \text { output }=q_{s} q_{m} \text {, } \\
& \text { get complete segregation of skill: } q_{s}=q_{m} \\
& \text { - fully assortative matching }
\end{aligned}
$$

(iii) different tasks differentially sensitive to skill

- if instead

$$
\text { output }=q_{s} q_{m},
$$

get complete segregation of skill: $q_{s}=q_{m}$

- fully assortative matching
- differential sensitivity

$$
\text { output }=q_{s} q_{m}^{2}
$$

(iii) different tasks differentially sensitive to skill

- if instead

$$
\text { output }=q_{s} q_{m},
$$

get complete segregation of skill: $q_{s}=q_{m}$

- fully assortative matching
- differential sensitivity

$$
\text { output }=q_{s} q_{m}^{2}
$$

- still have some assortative matching
(iii) different tasks differentially sensitive to skill
- if instead

$$
\text { output }=q_{s} q_{m},
$$

get complete segregation of skill: $q_{s}=q_{m}$

- fully assortative matching
- differential sensitivity

$$
\text { output }=q_{s} q_{m}^{2}
$$

- still have some assortative matching
- also have second force
(iii) different tasks differentially sensitive to skill
- if instead

$$
\text { output }=q_{s} q_{m},
$$

get complete segregation of skill: $q_{s}=q_{m}$

- fully assortative matching
- differential sensitivity

$$
\text { output }=q_{s} q_{m}^{2}
$$

- still have some assortative matching
- also have second force

$$
\text { implies } q_{m}>q_{s}
$$

Competitive equilibrium

Competitive equilibrium

- wage schedule $w^{*}(q)$

Competitive equilibrium

- wage schedule $w^{*}(q)$
- matching rule

Competitive equilibrium

- wage schedule $w^{*}(q)$
- matching rule
$\pi\left(q, q^{\prime}\right)=$ equilibrium fraction of matches with

$$
q_{s}=q, q_{m}=q^{\prime}
$$

Competitive equilibrium

- wage schedule $w^{*}(q)$
- matching rule
$\pi\left(q, q^{\prime}\right)=$ equilibrium fraction of matches with

$$
\begin{gathered}
q_{s}=q, q_{m}=q^{\prime} \\
\pi^{*}(\cdot, \cdot)=\arg \max _{\pi(\cdot, \cdot)} \sum_{q, q^{\prime}} \pi\left(q, q^{\prime}\right) q\left(q^{\prime}\right)^{2} \quad \text { (output maximized) }
\end{gathered}
$$

Competitive equilibrium

- wage schedule $w^{*}(q)$
- matching rule
$\pi\left(q, q^{\prime}\right)=$ equilibrium fraction of matches with

$$
\begin{aligned}
& q_{s}=q, q_{m}=q^{\prime} \\
& \pi^{*}(\cdot, \cdot)=\arg \max _{\pi(\cdot \cdot)} \sum_{q, q^{\prime}} \pi\left(q, q^{\prime}\right) q\left(q^{\prime}\right)^{2} \quad \text { (output maximized) } \\
& q\left(q^{\prime}\right)^{2}-w^{*}(q)-w^{*}\left(q^{\prime}\right) \leq 0
\end{aligned}
$$

Competitive equilibrium

- wage schedule $w^{*}(q)$
- matching rule
$\pi\left(q, q^{\prime}\right)=$ equilibrium fraction of matches with

$$
\begin{aligned}
& q_{s}=q, q_{m}=q^{\prime} \\
& \pi^{*}(\cdot, \cdot)=\arg \max _{\pi(\cdot,)} \sum_{q, q^{\prime}} \pi\left(q, q^{\prime}\right) q\left(q^{\prime}\right)^{2} \quad \text { (output maximized) } \\
& q\left(q^{\prime}\right)^{2}-w^{*}(q)-w^{*}\left(q^{\prime}\right) \leq 0 \\
& -\quad \text { equality if } \pi^{*}\left(q, q^{\prime}\right)>0 \quad \text { (no profit in equilibrium) }
\end{aligned}
$$

suppose

suppose

$$
p(L)=p(M)=p(H)=\frac{1}{3}
$$

suppose

$$
p(L)=p(M)=p(H)=\frac{1}{3}
$$

claim: if low dispersion $(H<\sqrt{2} L)$, then

suppose

$$
p(L)=p(M)=p(H)=\frac{1}{3}
$$

claim: if low dispersion $(H<\sqrt{2} L)$, then

$$
\pi^{*}(L, M)=\pi^{*}(L, H)=\pi^{*}(M, H)=\frac{1}{3}
$$

suppose

$$
p(L)=p(M)=p(H)=\frac{1}{3}
$$

claim: if low dispersion $(H<\sqrt{2} L)$, then

$$
\pi^{*}(L, M)=\pi^{*}(L, H)=\pi^{*}(M, H)=\frac{1}{3}
$$

- $3>2 \sqrt{2}$

suppose

$$
p(L)=p(M)=p(H)=\frac{1}{3}
$$

claim: if low dispersion $(H<\sqrt{2} L)$, then

$$
\pi^{*}(L, M)=\pi^{*}(L, H)=\pi^{*}(M, H)=\frac{1}{3}
$$

- $3>2 \sqrt{2}$
- so $4 L^{3}>L^{3}+2 \sqrt{2} L^{3}$, and so

suppose

$$
p(L)=p(M)=p(H)=\frac{1}{3}
$$

claim: if low dispersion $(H<\sqrt{2} L)$, then

$$
\pi^{*}(L, M)=\pi^{*}(L, H)=\pi^{*}(M, H)=\frac{1}{3}
$$

- $3>2 \sqrt{2}$
- so $4 L^{3}>L^{3}+2 \sqrt{2} L^{3}$, and so
(1) $2 L M^{2}>L^{3}+M^{3}$

suppose

$$
p(L)=p(M)=p(H)=\frac{1}{3}
$$

claim: if low dispersion ($H<\sqrt{2} L$), then

$$
\pi^{*}(L, M)=\pi^{*}(L, H)=\pi^{*}(M, H)=\frac{1}{3}
$$

- $3>2 \sqrt{2}$
- so $4 L^{3}>L^{3}+2 \sqrt{2} L^{3}$, and so
(1) $2 L M^{2}>L^{3}+M^{3}$
- if $\pi^{*}(L, L)>0$ (L-workers "self-matched") then

suppose

$$
p(L)=p(M)=p(H)=\frac{1}{3}
$$

claim: if low dispersion ($H<\sqrt{2} L$), then

$$
\pi^{*}(L, M)=\pi^{*}(L, H)=\pi^{*}(M, H)=\frac{1}{3}
$$

- $3>2 \sqrt{2}$
- so $4 L^{3}>L^{3}+2 \sqrt{2} L^{3}$, and so
(1) $2 L M^{2}>L^{3}+M^{3}$
- if $\pi^{*}(L, L)>0$ (L-workers "self-matched") then
$\pi^{*}(M, M)=0 \quad$ from (1)
- similarly, $\pi^{*}(H, H)=0 \quad$ because $2 L H^{2}>L^{3}+H^{3}$
- similarly, $\pi^{*}(H, H)=0$ because $2 L H^{2}>L^{3}+H^{3}$
- hence, $\pi^{*}(M, H)>0$
- similarly, $\pi^{*}(H, H)=0 \quad$ because $2 L H^{2}>L^{3}+H^{3}$
$-\quad$ hence, $\pi^{*}(M, H)>0$
- but $L M^{2}+L H^{2}>L^{3}+M H^{2}$, contradiction
- similarly, $\pi^{*}(H, H)=0 \quad$ because $2 L H^{2}>L^{3}+H^{3}$
- hence, $\pi^{*}(M, H)>0$
- but $L M^{2}+L H^{2}>L^{3}+M H^{2}$, contradiction
- hence, $\pi(L, L)=0$; similarly $\pi^{*}(M, M)=\pi^{*}(H, H)=0$
- similarly, $\pi^{*}(H, H)=0 \quad$ because $2 L H^{2}>L^{3}+H^{3}$
- hence, $\pi^{*}(M, H)>0$
- but $L M^{2}+L H^{2}>L^{3}+M H^{2}$, contradiction
- hence, $\pi(L, L)=0$; similarly $\pi^{*}(M, M)=\pi^{*}(H, H)=0$
- $L M^{2}=w^{*}(L)+w^{*}(M)$,
- similarly, $\pi^{*}(H, H)=0 \quad$ because $2 L H^{2}>L^{3}+H^{3}$
- hence, $\pi^{*}(M, H)>0$
- but $L M^{2}+L H^{2}>L^{3}+M H^{2}$, contradiction
- hence, $\pi(L, L)=0$; similarly $\pi^{*}(M, M)=\pi^{*}(H, H)=0$
- $L M^{2}=w^{*}(L)+w^{*}(M)$,

$$
L H^{2}=w^{*}(L)+w^{*}(H)
$$

- similarly, $\pi^{*}(H, H)=0 \quad$ because $2 L H^{2}>L^{3}+H^{3}$
- hence, $\pi^{*}(M, H)>0$
- but $L M^{2}+L H^{2}>L^{3}+M H^{2}$, contradiction
- hence, $\pi(L, L)=0$; similarly $\pi^{*}(M, M)=\pi^{*}(H, H)=0$
- $L M^{2}=w^{*}(L)+w^{*}(M)$,

$$
\begin{aligned}
& L H^{2}=w^{*}(L)+w^{*}(H) \\
& M H^{2}=w^{*}(M)+w^{*}(H)
\end{aligned}
$$

- $w^{*}(L)=\frac{L M^{2}+L H^{2}-M H^{2}}{2}$
- $w^{*}(L)=\frac{L M^{2}+L H^{2}-M H^{2}}{2}$

$$
w^{*}(M)=\frac{L M^{2}+M H^{2}-L H^{2}}{2}
$$

- $w^{*}(L)=\frac{L M^{2}+L H^{2}-M H^{2}}{2}$

$$
\begin{aligned}
& w^{*}(M)=\frac{L M^{2}+M H^{2}-L H^{2}}{2} \\
& w^{*}(H)=\frac{L H^{2}+M H^{2}-L M^{2}}{2}
\end{aligned}
$$

- $w^{*}(L)=\frac{L M^{2}+L H^{2}-M H^{2}}{2}$

$$
\begin{aligned}
& w^{*}(M)=\frac{L M^{2}+M H^{2}-L H^{2}}{2} \\
& w^{*}(H)=\frac{L H^{2}+M H^{2}-L M^{2}}{2}
\end{aligned}
$$

- Notice $\frac{\partial w^{*}(L)}{\partial M}>0 \quad \frac{\partial w^{*}(H)}{\partial M}<0$
- $w^{*}(L)=\frac{L M^{2}+L H^{2}-M H^{2}}{2}$

$$
\begin{aligned}
& w^{*}(M)=\frac{L M^{2}+M H^{2}-L H^{2}}{2} \\
& w^{*}(H)=\frac{L H^{2}+M H^{2}-L M^{2}}{2}
\end{aligned}
$$

- Notice

$$
\frac{\partial w^{*}(L)}{\partial M}>0 \quad \frac{\partial w^{*}(H)}{\partial M}<0
$$

Proposition 1: Starting from low skill dispersion, $H<\sqrt{2} L$, increase in median skill reduces inequality in wages (and raises mean and median wage)

But opposite occurs if skill distribution dispersed

But opposite occurs if skill distribution dispersed

- claim: this what happened in U.S., U.K., and France

But opposite occurs if skill distribution dispersed

- claim: this what happened in U.S., U.K., and France

Proposition 2: Starting from sufficiently dispersed skill distribution $\left(M>\frac{4}{3} L\right.$ and $\left.H>\sqrt{\frac{3}{2}} M\right)$, increase in median M magnifies inequality:

But opposite occurs if skill distribution dispersed

- claim: this what happened in U.S., U.K., and France

Proposition 2: Starting from sufficiently dispersed skill distribution $\left(M>\frac{4}{3} L\right.$ and $\left.H>\sqrt{\frac{3}{2}} M\right)$, increase in median M magnifies inequality:

$$
\frac{\partial w^{*}(L)}{\partial M} \leq 0 \quad \text { and } \quad \frac{\partial w^{*}(H)}{\partial M} \geq 0
$$

But opposite occurs if skill distribution dispersed

- claim: this what happened in U.S., U.K., and France

Proposition 2: Starting from sufficiently dispersed skill distribution $\left(M>\frac{4}{3} L\right.$ and $\left.H>\sqrt{\frac{3}{2}} M\right)$, increase in median M magnifies inequality:

$$
\frac{\partial w^{*}(L)}{\partial M} \leq 0 \quad \text { and } \quad \frac{\partial w^{*}(H)}{\partial M} \geq 0
$$

and if either L-workers or M-workers not selfmatched, at least one equality strict

Proof: Suppose $p(L)=p(H)=\frac{1}{5} \quad p(M)=\frac{3}{5}$

Proof: Suppose $p(L)=p(H)=\frac{1}{5} \quad p(M)=\frac{3}{5}$
(2)
$2 L M^{2}>L^{3}+M^{3} \quad 2 M H^{2}>M^{3}+H^{3}$

Proof: Suppose $p(L)=p(H)=\frac{1}{5} \quad p(M)=\frac{3}{5}$

(2)

$$
2 L M^{2}>L^{3}+M^{3} \quad 2 M H^{2}>M^{3}+H^{3}
$$

- $\pi^{*}(L, H)=0$ because $H \gg L$

Proof: Suppose $p(L)=p(H)=\frac{1}{5} \quad p(M)=\frac{3}{5}$
(2)

$$
2 L M^{2}>L^{3}+M^{3} \quad 2 M H^{2}>M^{3}+H^{3}
$$

- $\pi^{*}(L, H)=0 \quad$ because $\quad H \gg L$
- $\pi^{*}(L, L)=\pi^{*}(H, H)=0$ from (2)

Proof: Suppose $p(L)=p(H)=\frac{1}{5} \quad p(M)=\frac{3}{5}$
(2)

$$
2 L M^{2}>L^{3}+M^{3} \quad 2 M H^{2}>M^{3}+H^{3}
$$

- $\pi^{*}(L, H)=0$ because $H \gg L$
- $\pi^{*}(L, L)=\pi^{*}(H, H)=0$ from (2)
- $\pi^{*}(L, M)=\pi^{*}(M, H)=\frac{2}{5} \quad \pi^{*}(M, M)=\frac{1}{5}$

Proof: Suppose $p(L)=p(H)=\frac{1}{5} \quad p(M)=\frac{3}{5}$
(2)

$$
2 L M^{2}>L^{3}+M^{3} \quad 2 M H^{2}>M^{3}+H^{3}
$$

- $\pi^{*}(L, H)=0$ because $H \gg L$
- $\pi^{*}(L, L)=\pi^{*}(H, H)=0$ from (2)
- $\pi^{*}(L, M)=\pi^{*}(M, H)=\frac{2}{5} \quad \pi^{*}(M, M)=\frac{1}{5}$
- $w^{*}(M)=\frac{M^{3}}{2} \quad$ (from self-matching)

Proof: Suppose $p(L)=p(H)=\frac{1}{5} \quad p(M)=\frac{3}{5}$
(2)

$$
2 L M^{2}>L^{3}+M^{3} \quad 2 M H^{2}>M^{3}+H^{3}
$$

- $\pi^{*}(L, H)=0$ because $H \gg L$
- $\pi^{*}(L, L)=\pi^{*}(H, H)=0$ from (2)
- $\pi^{*}(L, M)=\pi^{*}(M, H)=\frac{2}{5} \quad \pi^{*}(M, M)=\frac{1}{5}$
- $w^{*}(M)=\frac{M^{3}}{2} \quad$ (from self-matching)
- $w^{*}(L)=L M^{2}-\frac{M^{3}}{2}, w^{*}(H)=M H^{2}-\frac{M^{3}}{2}$

Proof: Suppose $p(L)=p(H)=\frac{1}{5} \quad p(M)=\frac{3}{5}$

> (2)

$$
2 L M^{2}>L^{3}+M^{3} \quad 2 M H^{2}>M^{3}+H^{3}
$$

- $\pi^{*}(L, H)=0$ because $H \gg L$
- $\pi^{*}(L, L)=\pi^{*}(H, H)=0$ from (2)
- $\pi^{*}(L, M)=\pi^{*}(M, H)=\frac{2}{5} \quad \pi^{*}(M, M)=\frac{1}{5}$
- $w^{*}(M)=\frac{M^{3}}{2} \quad$ (from self-matching)
- $w^{*}(L)=L M^{2}-\frac{M^{3}}{2}, \quad w^{*}(H)=M H^{2}-\frac{M^{3}}{2}$
- $\frac{\partial w^{*}(L)}{\partial M}=2 L M-\frac{3 M^{2}}{2}<0$, since $M>\frac{4}{3} L$

Proof: Suppose $p(L)=p(H)=\frac{1}{5} \quad p(M)=\frac{3}{5}$
(2)

$$
2 L M^{2}>L^{3}+M^{3} \quad 2 M H^{2}>M^{3}+H^{3}
$$

- $\pi^{*}(L, H)=0$ because $H \gg L$
- $\pi^{*}(L, L)=\pi^{*}(H, H)=0$ from (2)
- $\pi^{*}(L, M)=\pi^{*}(M, H)=\frac{2}{5} \quad \pi^{*}(M, M)=\frac{1}{5}$
- $w^{*}(M)=\frac{M^{3}}{2} \quad$ (from self-matching)
- $w^{*}(L)=L M^{2}-\frac{M^{3}}{2}, \quad w^{*}(H)=M H^{2}-\frac{M^{3}}{2}$
- $\frac{\partial w^{*}(L)}{\partial M}=2 L M-\frac{3 M^{2}}{2}<0$, since $M>\frac{4}{3} L$
- $\frac{\partial w^{*}(H)}{\partial M}=H^{2}-\frac{3 M^{2}}{2}>0$, since $H>\sqrt{\frac{3}{2}} M$

Segregation

Segregation
Index of relative segregation

Segregation
Index of relative segregation

$$
\rho=\frac{B}{B+W},
$$

Segregation
Index of relative segregation

$$
\begin{gathered}
\rho=\frac{B}{B+W} \\
B=\text { skill variation between firms }
\end{gathered}
$$

Segregation
Index of relative segregation

$$
\rho=\frac{B}{B+W},
$$

$B=$ skill variation between firms
$=\sum_{q} \sum_{q^{\prime}}\left(\frac{q+q^{\prime}}{2}-\mu\right)^{2} \pi^{*}\left(q, q^{\prime}\right) \quad \mu=$ mean skill in population

Segregation
Index of relative segregation

$$
\rho=\frac{B}{B+W},
$$

$B=$ skill variation between firms
$=\sum_{q} \sum_{q^{\prime}}\left(\frac{q+q^{\prime}}{2}-\mu\right)^{2} \pi^{*}\left(q, q^{\prime}\right) \quad \mu=$ mean skill in population
$W=$ skill variation within firms

Segregation
Index of relative segregation

$$
\rho=\frac{B}{B+W},
$$

$B=$ skill variation between firms
$=\sum_{q} \sum_{q^{\prime}}\left(\frac{q+q^{\prime}}{2}-\mu\right)^{2} \pi^{*}\left(q, q^{\prime}\right) \quad \mu=$ mean skill in population
$W=$ skill variation within firms

$$
=\sum_{q} \sum_{q^{\prime}}\left(q-\frac{q+q^{\prime}}{2}\right)^{2} \pi^{*}\left(q, q^{\prime}\right)
$$

Proposition 2: Suppose

Proposition 2: Suppose

$$
p(L)+p(M) M+p(H) H=M \quad(M=\text { mean skill })
$$

Proposition 2: Suppose

$$
p(L)+p(M) M+p(H) H=M \quad(M=\text { mean skill })
$$

If dispersion of skills big enough, i.e.,

Proposition 2: Suppose

$$
p(L)+p(M) M+p(H) H=M \quad(M=\text { mean skill })
$$

If dispersion of skills big enough, i.e.,

$$
H>\left(\frac{1+\sqrt{5}}{2}\right) L
$$

Proposition 2: Suppose

$$
p(L)+p(M) M+p(H) H=M \quad(M=\text { mean skill })
$$

If dispersion of skills big enough, i.e.,

$$
H>\left(\frac{1+\sqrt{5}}{2}\right) L
$$

then mean-preserving spread in distribution increases segregation index ρ

Proof: Suppose $L=2, M=3, H=4 \quad p(L)=p(H)=\frac{1}{3}+\varepsilon$ and $p(M)=\frac{1}{3}-2 \varepsilon$

Proof: Suppose $L=2, M=3, H=4 \quad p(L)=p(H)=\frac{1}{3}+\varepsilon$ and $p(M)=\frac{1}{3}-2 \varepsilon$

- Then $2 M H^{2}+L^{3}>2 L M^{2}+H^{3}$

Proof: Suppose $L=2, M=3, H=4 \quad p(L)=p(H)=\frac{1}{3}+\varepsilon$ and $p(M)=\frac{1}{3}-2 \varepsilon$

- Then $2 M H^{2}+L^{3}>2 L M^{2}+H^{3}$
- So $\pi^{*}(L, L)=\frac{1}{6}+\frac{1}{2} \varepsilon$

Proof: Suppose $L=2, M=3, H=4 \quad p(L)=p(H)=\frac{1}{3}+\varepsilon$ and $p(M)=\frac{1}{3}-2 \varepsilon$

- Then $2 M H^{2}+L^{3}>2 L M^{2}+H^{3}$
- So $\pi^{*}(L, L)=\frac{1}{6}+\frac{1}{2} \varepsilon$

$$
\pi^{*}(M, H)=\frac{1}{3}-2 \varepsilon
$$

Proof: Suppose $L=2, M=3, H=4 \quad p(L)=p(H)=\frac{1}{3}+\varepsilon$ and $p(M)=\frac{1}{3}-2 \varepsilon$

- Then $2 M H^{2}+L^{3}>2 L M^{2}+H^{3}$
- So $\pi^{*}(L, L)=\frac{1}{6}+\frac{1}{2} \varepsilon$

$$
\begin{aligned}
& \pi^{*}(M, H)=\frac{1}{3}-2 \varepsilon \\
& \pi^{*}(H, H)=3 \varepsilon
\end{aligned}
$$

Proof: Suppose $L=2, M=3, H=4 \quad p(L)=p(H)=\frac{1}{3}+\varepsilon$ and $p(M)=\frac{1}{3}-2 \varepsilon$

- Then $2 M H^{2}+L^{3}>2 L M^{2}+H^{3}$
- So $\pi^{*}(L, L)=\frac{1}{6}+\frac{1}{2} \varepsilon$
$\pi^{*}(M, H)=\frac{1}{3}-2 \varepsilon$
$\pi^{*}(H, H)=3 \varepsilon$
- $B=\left(\frac{L+L}{2}-M\right)^{2}\left(\frac{1}{6}+\frac{1}{2} \varepsilon\right)+\left(\frac{M+H}{2}-M\right)^{2}\left(\frac{1}{3}-2 \varepsilon\right)+\left(\frac{H+H}{2}-M\right)^{2}(3 \varepsilon)$

Proof: Suppose $L=2, M=3, H=4 \quad p(L)=p(H)=\frac{1}{3}+\varepsilon$ and $p(M)=\frac{1}{3}-2 \varepsilon$

- Then $2 M H^{2}+L^{3}>2 L M^{2}+H^{3}$
- So $\pi^{*}(L, L)=\frac{1}{6}+\frac{1}{2} \varepsilon$

$$
\begin{aligned}
& \pi^{*}(M, H)=\frac{1}{3}-2 \varepsilon \\
& \pi^{*}(H, H)=3 \varepsilon
\end{aligned}
$$

- $B=\left(\frac{L+L}{2}-M\right)^{2}\left(\frac{1}{6}+\frac{1}{2} \varepsilon\right)+\left(\frac{M+H}{2}-M\right)^{2}\left(\frac{1}{3}-2 \varepsilon\right)+\left(\frac{H+H}{2}-M\right)^{2}(3 \varepsilon)$
- $W=\left(\frac{L+L}{2}-L\right)^{2}\left(\frac{1}{6}+\frac{1}{2} \varepsilon\right)+\frac{1}{2}\left(\frac{M+H}{2}-M\right)^{2}\left(\frac{1}{3}-2 \varepsilon\right)+\frac{1}{2}\left(\frac{M+H}{2}-H\right)^{2}\left(\frac{1}{3}-2 \varepsilon\right)+\left(\frac{H+H}{2}-H\right)^{2}$

Proof: Suppose $L=2, M=3, H=4 \quad p(L)=p(H)=\frac{1}{3}+\varepsilon$ and $p(M)=\frac{1}{3}-2 \varepsilon$

- Then $2 M H^{2}+L^{3}>2 L M^{2}+H^{3}$
- So $\pi^{*}(L, L)=\frac{1}{6}+\frac{1}{2} \varepsilon$

$$
\begin{aligned}
& \pi^{*}(M, H)=\frac{1}{3}-2 \varepsilon \\
& \pi^{*}(H, H)=3 \varepsilon
\end{aligned}
$$

- $B=\left(\frac{L+L}{2}-M\right)^{2}\left(\frac{1}{6}+\frac{1}{2} \varepsilon\right)+\left(\frac{M+H}{2}-M\right)^{2}\left(\frac{1}{3}-2 \varepsilon\right)+\left(\frac{H+H}{2}-M\right)^{2}(3 \varepsilon)$
- $W=\left(\frac{L+L}{2}-L\right)^{2}\left(\frac{1}{6}+\frac{1}{2} \varepsilon\right)+\frac{1}{2}\left(\frac{M+H}{2}-M\right)^{2}\left(\frac{1}{3}-2 \varepsilon\right)+\frac{1}{2}\left(\frac{M+H}{2}-H\right)^{2}\left(\frac{1}{3}-2 \varepsilon\right)+\left(\frac{H+H}{2}-H\right)^{2}$
- B increasing in ε

Proof: Suppose $L=2, M=3, H=4 \quad p(L)=p(H)=\frac{1}{3}+\varepsilon$ and $p(M)=\frac{1}{3}-2 \varepsilon$

- Then $2 M H^{2}+L^{3}>2 L M^{2}+H^{3}$
- So $\pi^{*}(L, L)=\frac{1}{6}+\frac{1}{2} \varepsilon$

$$
\begin{aligned}
& \pi^{*}(M, H)=\frac{1}{3}-2 \varepsilon \\
& \pi^{*}(H, H)=3 \varepsilon
\end{aligned}
$$

- $B=\left(\frac{L+L}{2}-M\right)^{2}\left(\frac{1}{6}+\frac{1}{2} \varepsilon\right)+\left(\frac{M+H}{2}-M\right)^{2}\left(\frac{1}{3}-2 \varepsilon\right)+\left(\frac{H+H}{2}-M\right)^{2}(3 \varepsilon)$
- $W=\left(\frac{L+L}{2}-L\right)^{2}\left(\frac{1}{6}+\frac{1}{2} \varepsilon\right)+\frac{1}{2}\left(\frac{M+H}{2}-M\right)^{2}\left(\frac{1}{3}-2 \varepsilon\right)+\frac{1}{2}\left(\frac{M+H}{2}-H\right)^{2}\left(\frac{1}{3}-2 \varepsilon\right)+\left(\frac{H+H}{2}-H\right)^{2}$
- B increasing in ε
- W decreasing in ε

Proof: Suppose $L=2, M=3, H=4 \quad p(L)=p(H)=\frac{1}{3}+\varepsilon$ and $p(M)=\frac{1}{3}-2 \varepsilon$

- Then $2 M H^{2}+L^{3}>2 L M^{2}+H^{3}$
- So $\pi^{*}(L, L)=\frac{1}{6}+\frac{1}{2} \varepsilon$

$$
\begin{aligned}
& \pi^{*}(M, H)=\frac{1}{3}-2 \varepsilon \\
& \pi^{*}(H, H)=3 \varepsilon
\end{aligned}
$$

- $B=\left(\frac{L+L}{2}-M\right)^{2}\left(\frac{1}{6}+\frac{1}{2} \varepsilon\right)+\left(\frac{M+H}{2}-M\right)^{2}\left(\frac{1}{3}-2 \varepsilon\right)+\left(\frac{H+H}{2}-M\right)^{2}(3 \varepsilon)$
- $W=\left(\frac{L+L}{2}-L\right)^{2}\left(\frac{1}{6}+\frac{1}{2} \varepsilon\right)+\frac{1}{2}\left(\frac{M+H}{2}-M\right)^{2}\left(\frac{1}{3}-2 \varepsilon\right)+\frac{1}{2}\left(\frac{M+H}{2}-H\right)^{2}\left(\frac{1}{3}-2 \varepsilon\right)+\left(\frac{H+H}{2}-H\right)^{2}$
- B increasing in ε
- W decreasing in ε
- So $\frac{B}{B+W}$ increasing in ε

Proof: Suppose $L=2, M=3, H=4 p(L)=p(H)=\frac{1}{3}+\varepsilon$ and $p(M)=\frac{1}{3}-2 \varepsilon$

- Then $2 M H^{2}+L^{3}>2 L M^{2}+H^{3}$
- So $\pi^{*}(L, L)=\frac{1}{6}+\frac{1}{2} \varepsilon$

$$
\begin{aligned}
& \pi^{*}(M, H)=\frac{1}{3}-2 \varepsilon \\
& \pi^{*}(H, H)=3 \varepsilon
\end{aligned}
$$

- $B=\left(\frac{L+L}{2}-M\right)^{2}\left(\frac{1}{6}+\frac{1}{2} \varepsilon\right)+\left(\frac{M+H}{2}-M\right)^{2}\left(\frac{1}{3}-2 \varepsilon\right)+\left(\frac{H+H}{2}-M\right)^{2}(3 \varepsilon)$
- $W=\left(\frac{L+L}{2}-L\right)^{2}\left(\frac{1}{6}+\frac{1}{2} \varepsilon\right)+\frac{1}{2}\left(\frac{M+H}{2}-M\right)^{2}\left(\frac{1}{3}-2 \varepsilon\right)+\frac{1}{2}\left(\frac{M+H}{2}-H\right)^{2}\left(\frac{1}{3}-2 \varepsilon\right)+\left(\frac{H+H}{2}-H\right)^{2}(3 \varepsilon)$
- B increasing in ε
- W decreasing in ε
- So $\frac{B}{B+W}$ increasing in ε
- intuitively, B rises as weight in tails increases

Return to globalization and Mexico

Return to globalization and Mexico
Puzzles:

Return to globalization and Mexico
Puzzles:

- Mexico has comparative advantage in low-skill labor

Return to globalization and Mexico
Puzzles:

- Mexico has comparative advantage in low-skill labor but

Return to globalization and Mexico
Puzzles:

- Mexico has comparative advantage in low-skill labor but
trade increased gap between high- and low-skill workers

Return to globalization and Mexico
Puzzles:

- Mexico has comparative advantage in low-skill labor but
trade increased gap between high- and low-skill workers
- contradicts Heckscher-Ohlin theory

Return to globalization and Mexico
Puzzles:

- Mexico has comparative advantage in low-skill labor but
trade increased gap between high- and low-skill workers
- contradicts Heckscher-Ohlin theory
- H-O implies that
as 2 countries become more different (in factor endowments), should trade more

Return to globalization and Mexico
Puzzles:

- Mexico has comparative advantage in low-skill labor but
trade increased gap between high- and low-skill workers
- contradicts Heckscher-Ohlin theory
- H-O implies that
as 2 countries become more different (in factor endowments), should trade more
- hence, U.S. and Malawi should trade more than U.S. and Mexico (Malawi more different than Mexico from U.S.)

Return to globalization and Mexico
Puzzles:

- Mexico has comparative advantage in low-skill labor but
trade increased gap between high- and low-skill workers
- contradicts Heckscher-Ohlin theory
- H-O implies that
as 2 countries become more different (in factor endowments), should trade more
- hence, U.S. and Malawi should trade more than U.S. and Mexico (Malawi more different than Mexico from U.S.)
- but Mexico trades much more than Malawi with U.S.

Resolution:

Resolution:

- think of globalization as increase in international production

Resolution:

- think of globalization as increase in international production
- Delhi call centers (outsourcing)

Resolution:

- think of globalization as increase in international production
- Delhi call centers (outsourcing)
- computers

Resolution:

- think of globalization as increase in international production
- Delhi call centers (outsourcing)
- computers
designed in U.S.

Resolution:

- think of globalization as increase in international production
- Delhi call centers (outsourcing)
- computers
designed in U.S.
programmed in Europe

Resolution:

- think of globalization as increase in international production
- Delhi call centers (outsourcing)
- computers
designed in U.S.
programmed in Europe
assembled in China

Resolution:

- think of globalization as increase in international production
- Delhi call centers (outsourcing)
- computers
designed in U.S.
programmed in Europe
assembled in China
- due to lower communication/transport costs
- 2 countries - one rich, one poor
- 2 countries - one rich, one poor
- rich country
- 2 countries - one rich, one poor
- rich country
- workers of skill levels A and B
- 2 countries - one rich, one poor
- rich country
- workers of skill levels A and B
- poor country
- 2 countries - one rich, one poor
- rich country
- workers of skill levels A and B
- poor country
- workers of skill levels C and D
- 2 countries - one rich, one poor
- rich country
- workers of skill levels A and B
- poor country
- workers of skill levels C and D

$$
A>B>C>D
$$

- 2 countries - one rich, one poor
- rich country
- workers of skill levels A and B
- poor country
- workers of skill levels C and D

$$
A>B>C>D
$$

(conclusions still hold if $C>B$)

- 2 countries - one rich, one poor
- rich country
- workers of skill levels A and B
- poor country
- workers of skill levels C and D

$$
A>B>C>D
$$

(conclusions still hold if $C>B$)

- production output $=q_{s} q_{m}^{2}$
- 2 countries - one rich, one poor
- rich country
- workers of skill levels A and B
- poor country
- workers of skill levels C and D

$$
A>B>C>D
$$

(conclusions still hold if $C>B$)

- production output $=q_{s} q_{m}^{2}$
- before globalization (i.e., in autarky), workers can match only domestically
- 2 countries - one rich, one poor
- rich country
- workers of skill levels A and B
- poor country
- workers of skill levels C and D

$$
A>B>C>D
$$

(conclusions still hold if $C>B$)

- production output $=q_{s} q_{m}^{2}$
- before globalization (i.e., in autarky), workers can match only domestically
- after globalization, international matching possible

$\underbrace{A>B}_{\begin{array}{c}\text { rich } \\ \text { country }\end{array}}>\underbrace{C>D}_{\begin{array}{c}\text { poor } \\ \text { country }\end{array}}$

$\underbrace{A>B}_{\begin{array}{c}\text { rich } \\ \text { country }\end{array}}>\underbrace{C>D}_{\begin{array}{c}\text { poor } \\ \text { country }\end{array}}$

Proposition 3: If D-workers have sufficiently low skill, i.e.,

$\underbrace{A>B}_{\begin{array}{c}\text { rich } \\ \text { country }\end{array}}>\underbrace{C>D}_{\begin{array}{c}\text { poor } \\ \text { country }\end{array}}$

Proposition 3: If D-workers have sufficiently low skill, i.e.,
(*) $B>\left(\frac{1+\sqrt{5}}{2}\right) D$,

$\underbrace{A>B}_{\substack{\text { cichny } \\ \text { county }}}>\underbrace{C>D}_{\substack{\text { poonr } \\ \text { county }}}$

Proposition 3: If D-workers have sufficiently low skill, i.e.,
(*) $B>\left(\frac{1+\sqrt{5}}{2}\right) D$,
then globalization increases inequality in poor country

$$
\underbrace{A>B}_{\begin{array}{c}
\text { rich } \\
\text { country }
\end{array}}>\underbrace{C>D}_{\begin{array}{c}
\text { por } \\
\text { country }
\end{array}} \quad\left({ }^{*}\right) B>\left(\frac{1+\sqrt{5}}{2}\right) D
$$

Proof: 2 cases

$$
\underbrace{A>B}_{\begin{array}{c}
\text { rich } \\
\text { country }
\end{array}}>\underbrace{C>D}_{\begin{array}{c}
\text { poor } \\
\text { country }
\end{array}} \quad\left({ }^{*}\right) B>\left(\frac{1+\sqrt{5}}{2}\right) D
$$

Proof: 2 cases
Case I $p(D)>p(C)$

$$
\underbrace{A>B}_{\begin{array}{c}
\text { rich } \\
\text { country }
\end{array}}>\underbrace{C>D}_{\begin{array}{c}
\text { poor } \\
\text { country }
\end{array}} \quad\left({ }^{*}\right) B>\left(\frac{1+\sqrt{5}}{2}\right) D
$$

Proof: 2 cases

Case $I \quad p(D)>p(C)$

- $\pi_{a}^{*}(D, D)>0$,

$$
\underbrace{A>B}_{\begin{array}{c}
\text { rich } \\
\text { country }
\end{array}}>\underbrace{C>D}_{\begin{array}{c}
\text { por } \\
\text { country }
\end{array}} \quad\left({ }^{*}\right) B>\left(\frac{1+\sqrt{5}}{2}\right) D
$$

Proof: 2 cases

Case $I \quad p(D)>p(C)$

- $\pi_{a}^{*}(D, D)>0$,
- $\pi_{g}^{*}(D, D)>0$ (because, from (*), D-worker can't match with A - or B-worker)

$$
w_{a}^{*}(D)=w_{g}^{*}(D)=\frac{D^{3}}{2}
$$

$a=$ autarky $\quad g=$ post-globalization

$$
\underbrace{A>B}_{\begin{array}{c}
\text { rich } \\
\text { country }
\end{array}}>\underbrace{C>D}_{\begin{array}{c}
\text { por } \\
\text { country }
\end{array}} \quad(*) B>\left(\frac{1+\sqrt{5}}{2}\right) D
$$

Proof: 2 cases
Case I $p(D)>p(C)$

- $\pi_{a}^{*}(D, D)>0$,
- $\pi_{g}^{*}(D, D)>0$ (because, from (*), D-worker can't match with A - or B-worker)

$$
w_{a}^{*}(D)=w_{g}^{*}(D)=\frac{D^{3}}{2}
$$

$$
a=\text { autarky } \quad g=\text { post-globalization }
$$

- $w_{g}^{*}(C) \geq w_{a}^{*}(C)$ because of possible matching with B or A

$$
\underbrace{A>B}_{\begin{array}{c}
\text { rich } \\
\text { country }
\end{array}}>\underbrace{C>D}_{\begin{array}{c}
\text { por } \\
\text { country }
\end{array}} \quad\left({ }^{*}\right) B>\left(\frac{1+\sqrt{5}}{2}\right) D
$$

Proof: 2 cases
Case I $p(D)>p(C)$

- $\pi_{a}^{*}(D, D)>0$,
- $\pi_{g}^{*}(D, D)>0$ (because, from (*), D-worker can't match with A - or B-worker)

$$
w_{a}^{*}(D)=w_{g}^{*}(D)=\frac{D^{3}}{2}
$$

$$
a=\text { autarky } \quad g=\text { post-globalization }
$$

- $w_{g}^{*}(C) \geq w_{a}^{*}(C)$ because of possible matching with B or A
- Hence, $w_{g}^{*}(C)-w_{g}^{*}(D) \geq w_{a}^{*}(C)-w_{a}^{*}(D)$ - - globalization causes rise in inequality

$\underbrace{A>B}_{\text {rich }}>\underbrace{C>D}_{\text {poor }}$

Case II $\quad p(D)<p(C)$

$\underbrace{A>B}_{\text {rich }}>\underbrace{C>D}_{\text {poor }}$

Case II $\quad p(D)<p(C)$

- $\pi_{a}^{*}(C, C)>0 \Rightarrow w_{a}^{*}(C)=\frac{C^{3}}{2}$

$$
\Rightarrow w_{a}^{*}(D)=\max \left\{\frac{D^{3}}{2}, D C^{2}-w_{a}^{*}(C)\right\}
$$

$\underbrace{A>B}_{\text {rich }}>\underbrace{C>D}_{\text {poor }}$

Case II $\quad p(D)<p(C)$

- $\pi_{a}^{*}(C, C)>0 \Rightarrow w_{a}^{*}(C)=\frac{C^{3}}{2}$

$$
\Rightarrow w_{a}^{*}(D)=\max \left\{\frac{D^{3}}{2}, D C^{2}-w_{a}^{*}(C)\right\}
$$

- $w_{g}^{*}(C) \geq w_{a}^{*}(C)$ - at worst C-workers can self-match

$\underbrace{A>B}_{\text {rich }}>\underbrace{C>D}_{\text {poor }}$

Case II $\quad p(D)<p(C)$

- $\pi_{a}^{*}(C, C)>0 \Rightarrow w_{a}^{*}(C)=\frac{C^{3}}{2}$

$$
\Rightarrow w_{a}^{*}(D)=\max \left\{\frac{D^{3}}{2}, D C^{2}-w_{a}^{*}(C)\right\}
$$

- $w_{g}^{*}(C) \geq w_{a}^{*}(C)$ - at worst C-workers can self-match
- $w_{g}^{*}(D)=\max \left\{\frac{D^{3}}{2}, D C^{2}-w_{g}^{*}(C)\right\} \leq w_{a}^{*}(D)=\max \left\{\frac{D^{3}}{2}, D C^{2}-\frac{C^{3}}{2}\right\}$

$\underbrace{A>B}_{\text {rich }}>\underbrace{C>D}_{\text {poor }}$

Case II $\quad p(D)<p(C)$

- $\pi_{a}^{*}(C, C)>0 \Rightarrow w_{a}^{*}(C)=\frac{C^{3}}{2}$

$$
\Rightarrow w_{a}^{*}(D)=\max \left\{\frac{D^{3}}{2}, D C^{2}-w_{a}^{*}(C)\right\}
$$

- $w_{g}^{*}(C) \geq w_{a}^{*}(C)$ - at worst C-workers can self-match
- $w_{g}^{*}(D)=\max \left\{\frac{D^{3}}{2}, D C^{2}-w_{g}^{*}(C)\right\} \leq w_{a}^{*}(D)=\max \left\{\frac{D^{3}}{2}, D C^{2}-\frac{C^{3}}{2}\right\}$
- Hence, again $w^{*}(C)-w^{*}(D)$ rises with globalization

Model also explains Malawi:

Model also explains Malawi:

- workers in Malawi have very low skills \Rightarrow no international matching opportunities

Policy?

Policy?

- How can D-workers benefit from globalization?

Policy?

- How can D-workers benefit from globalization?
- Suppose can increase q by Δq at cost $c(\Delta q)$

Policy?

- How can D-workers benefit from globalization?
- Suppose can increase q by Δq at cost $c(\Delta q)$
- may give D better matching opportunities

Policy?

- How can D-workers benefit from globalization?
- Suppose can increase q by Δq at cost $c(\Delta q)$
- may give D better matching opportunities
- who will bear cost?

Policy?

- How can D-workers benefit from globalization?
- Suppose can increase q by Δq at cost $c(\Delta q)$
- may give D better matching opportunities
- who will bear cost?
- not firm - -
education raises worker's productivity, but then have to pay higher wage

Policy?

- How can D-workers benefit from globalization?
- Suppose can increase q by Δq at cost $c(\Delta q)$
- may give D better matching opportunities
- who will bear cost?
- not firm - education raises worker's productivity, but then have to pay higher wage
- not worker
perhaps can't afford to pay

Policy?

- How can D-workers benefit from globalization?
- Suppose can increase q by Δq at cost $c(\Delta q)$
- may give D better matching opportunities
- who will bear cost?
- not firm --
education raises worker's productivity, but then have to pay higher wage
- not worker
perhaps can't afford to pay
- role for investment by third parties
domestic government
international agencies, NGOs
foreign aid
private foundations

