Reducing GHG Emissions: Policy Design Considerations

ISEO Summer School Iseo Italy June 23, 2008

Robert F. Wescott, Ph.D.

PRIMARY GOALS

- Develop an understanding of climate change policy instruments
- Offer frameworks for thinking about key policy design features
- Provoke a conversation about what policy instruments might be best suited for limiting GHG emissions.

Three Broad Approaches to Climate Change

Adaptation

- Humans have always adapted to changed conditions.
- Perhaps go for economic growth in short run, build up wealth, to have more resources to handle GHG consequences later.
- Richer countries probably more able to adapt.

Mitigation

- Increase world's ability to absorb GHG
- Eg., rather than investing in expensive abatement technology, plant a new forest.
- May be more cost effective

Stabilization

- Try to reduce GHG through policies—mandates, taxes, incentives
- Reward good behavior and punish bad behavior
- Focus of current debate around the world

Policymaker's Toolbox for Stabilization

TRADITIONAL COMMAND & Technology Mandale NTROL

- Government specifies "how" you use energy
- Example, "you must use lithium-ion batteries in your plug-in hybrid cars."

Performance Mandates

- Government specifies "at what maximum rate" you may emit per unit of energy used (i.e., intensity standard)
- Example, "your cars sold must emit less than 150 grams of CO2 per mile driven"

HYBRID SYSTEM: TRADABLE PERFORMANCE STANDARD

- Government tells you "maximum rate at which you should emit," but provides other options (carrots and sticks)
- Many variations, but most based on intensity standard
- Unlike performance standard, TPS provides alternative compliance mechanisms
- Policy Tradeoff: More flexibility than command and control, still no certainty on absolute emissions

HOW DOES TPS WORK?

Cap & Trade: Sector Program

- Government tells an industry "how much" it can emit as an industry, but leaves the question of where reductions take place to the market
- Poor policy for an industry with a small number of players and comparatively high abatement costs
- Policy Tradeoff: Provides emissions certainty, but effectively puts a cap on industry growth

Inferior to Economy-Wide C&T in All Respects!

Cap & Trade: Economy-wide Program

- Government determines which sectors will be covered and fixes the amount they can emit as a group
- If scope of program is broad (e.g., electric power + transportation + oil and gas + industry), effectively represents a new cost but not a cap on industry growth
- Policy Tradeoff: Guarantees emissions level, but at what cost?

POLICYMAKER'S TOOLBOX

CAP-AND-TRADE: THE BASIC MECHANICS

- Government establishes a "cap" that limits total amount of pollution allowed
- Creates a scarce resource: the right to emit
- Government distributes permits
- Permits traded and market price established
- Emitters submit permits at end of compliance period
- Number of permits declines each year

CAP-AND-TRADE: THE BASICS OF PRICE DETERMINATION Illustrative Marginal Abatement Cost Curve

Cumulative Emissions Reduction

CAP-AND-TRADE: HOW TECHNOLOGY CHANGES THE GAME

C&T AS MUSICAL CHAIRS

Today: Everyone Has a Seat!

Electric Power Generator

Gasoline Refiner

Natural Gas Distributor

Cement Manufacturer

EVERYONE HAS PRIVATE ABATEMENT COSTS

I can build a wind farm at \$30 per ton CO2 avoided

I can improve the efficiency of my plant for \$40 per ton CO2 avoided I can finance more efficient stoves for \$10 per ton CO2 avoided

I can blend SCMs for \$20 per ton CO2 avoided

Electric Power Generator

Gasoline Refiner

Natural Gas
Distributor

Cement Manufacturer

THE WRINKLE: YOU CAN BUY A CHAIR

First Round: Remove Chair & Play the Music

(Trade)

Electric Power Generator Will Buy Chair for Money

Gasoline Refiner

Natural Gas
Distributor

Cement Manufacturer

TRADING: LETS MAKE A DEAL!

Electric Power Generator

Gasoline Refiner

Natural Gas Distributor

Cement Manufacturer

TRADING: LETS MAKE A DEAL!

Electric Power Generator

Gasoline Refiner

Sold!

Natural Gas Distributor

Cement Manufacturer

ALL REMAINING PLAYERS HAVE CHAIRS

The Market Finds the Least Cost Reduction (\$10)

Electric Power Generator

But lots of issues, not an easy

- Program Scope: Which Sectors to include under the cap?
- <u>Target:</u> How much do you want these sectors to reduce?
- Trajectory: How fast do you want to approach the target?
- Allocation Mechanism: Auction or freely allocate permits?
- Compliance Flexibility: Allow banking or borrowing?
 What terms?
- Cost-Containment Mechanisms: Offsets, safety valves, or other measures to limit price volatility?

THE DEVIL IS IN THE DETAILS:

AUCTION VS. FREE ALLOCATION ETS Experience = Aversion to "Windfall Profits"

- Free allocation exception, not rule
 - Possible <u>if</u> industry demonstrates inability to pass through costs
 - In absence of free allocations, such industries are at competitive disadvantage relative to imports
 - Must also decide basis for allocation:
 - Historical emissions (grandfathering)
 - Carbon intensity factor (benchmarking)

THE DEVIL IS IN THE DETAILS:

- An offset is a reduction done outside the cap
- Geographic Restrictions
 - State (region) versus National versus International
 - The wider the scope, the lower the costs
- Quantitative Restrictions
 - % that may be used to comply in a given year
 - The higher the %, the lower the costs

Decisions about offsets are critical determinants of permit prices and overall program costs!

OFFSETS CAN DRAMATICALLY LOWER COSTS

Source: EPA Analysis of Lieberman-

Marna

THE DEVIL IS IN THE DETAILS:

SAFETY VALVES

- A preset level that permit prices cannot exceed
- Combines C&T and Tax (a "maximum potential tax")
- Advantage = <u>existence</u> provides some cost certainty (good for business planning)
- Disadvantage = <u>triggering</u> loosens the emissions cap (bad for guaranteeing emissions)
- Variations possible, but all involve same basic tension:

Cost Certainty versus Emissions Certainty

Other Policy Options

- Research and Development Spending
 - --Government can try to promote scientific discoveries, support research, pay bounties for breakthroughs. Rely on national laboratories, fund academic research

Other Ideas

- --Insure startup concepts (e.g., carbon sequestration)
- --Subsidy for first demonstration plants
- --Fee-bates (tax on inefficient car/appliance, subsidy for efficient car/appliance, etc.)

POLICY INSTRUMENTS: KEY INSIGHTS & TAKEAWAYS

- Policymaker's toolbox has a diverse range of instruments
- Key tension for the policymaker:
 - Cost Certainty versus Emission Certainty
- Flexibility usually generates lowest-cost reductions:
 - Competitiveness = f(Cost) = f(Flexibility)
- Cap & Trade is elegant on the surface, but many design details dictate the personality and attractiveness of the policy

Topics for Group Discussion

- In your experience is the global warming problem now accepted as real?
- Does the world have the kind of political leadership to solve the global warming problem?
- Why is it necessary to put GHG issues in the context of a full energy, economics, national security, foreign relations, individual freedom, environment debate? What are the trade-offs?
- How do leaders make citizens realize there are no easy answers, and that tough choices have to be made? (Germany, Florida, etc.)

Topics for Group Discussion, cont.

- Why is it said that economists like cap and trade, but businesses like a straight emissions tax?
- Any ideas for ways that "behavioral economics" could reduce GHG? (a great thesis topic!!)
- The California challenge—the leakage problem and how to avoid a policy failure "trifecta"?
- The ethanol hype—what to do after a bad policy has been established? (it was easy for GM and politicians!!!!)